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Atmosphere : 
Interacts with 
surrounding

~1e2-1e3 K


~1bar

Interior : Linked to 
the atmospheric 

dynamics/
composition

~1e3-1e4 K

~1-1e7bar

Core :

Composed of 

heavier elements, 
layout unknown


~1e4 K

~1e11Pa
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Rp

R* )
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Atmospheric scale height
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Variation of transit depth
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Summary
From the atmospheres to the interior

• Atmospheres :

• Structure & Dynamics : Modeling


• Interiors :

• Structure & Dynamics : Modeling


• Linking the two :

• Complete structural modeling
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Atmospheres
Summary
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Self-consistent atmosphere models

From B. Charnay
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Chemical composition

B. Charnay et al. (2018)12



Equilibrium Chemistry
Using thermodynamics
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Chemistry
Using kinetics 
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Disequilibrium Chemistry

Yui Kawashima et al. & Morley et al.

Quenching pressure

τchem < τmixing

τchem > τmixing
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Cloud distribution

Charnay et al. 2018
16



Radiative Transfer
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Radiative Transfer

B(T, λ) =
2hc2

λ5

1
ehc/λkT − 118



Radiative Transfer
Two stream approximation
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Thermal profile
Methods for solving RT equation

1. Gray/Semi-Gray analytical model (Guillot et al. / Parmentier et al.)

2. Correlated-k method
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Atmospheric dynamics
Euler equations (Boussinesq regime)













∂ρ
∂t

+ ⃗∇ (ρ ⃗u ) = ⃗0

∂ρ ⃗u
∂t

+ ⃗∇ (ρ ⃗u ⊗ ⃗u + P) = ρ ⃗g

∂ρX
∂t

+ ⃗∇ (ρX ⃗u ) = ρR(X, P, T)

∂ρϵ
∂t

+ ⃗∇ ( ⃗u (ρϵ + P) = ρcpH(X, P, T)
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Atmospheric dynamics
Euler equations linarised 

exp(ωt + i(kx + ky + kz))
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Atmospheric dynamics
Euler equations : Jacobien

∇T =
∂log(T)
∂log(P)

∇ad =
γ − 1

γ
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Atmospheric dynamics
Schwarzschild criterion

Stability analysis using the determinant of the Jacobien

∇T − ∇ad > 0
If validated, then convection is the most efficient heat 

transfer process

HT = 0 RX = 0
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Atmospheric dynamics
Validation of Schwarzschild criterion

dlog(T)
dlog(P)

≈
γ − 1

γ
P1−γTγ = cste

dT
dz

= −
γ − 1

γ
μg
R

With Hydrostatic balance
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Modeling atmospheres
Pressure-Temperature profiles
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Interiors
Equations of state
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Mixing equations of state

W(T, P) = ∑
i

XiWi(T, P) Xi =
Mi

∑i Mi

S = ∑
i

XiSi(T, P) + Smix(T, P)

S = XHSH(T, P) + XHeSHe(T, P) + XH2OSH2O(T, P) + Smix(T, P)

Smix(T, P) = − kb
xhln(xh) + xHeln(xHe)

mh ∑i xiAi
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Mixing equations of state

1
ρp

= ∑
i

αi

ρi

1
ρ

=
αH

ρH
+

αHe

ρHe
+ o(δV)

αi =
mi

mtot
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Computing internal profile
Adiabatic profile

dS = 0
dP
dz

= − ρg
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Computing internal profile

1. Define « surface » pressure and temperature




2. Evaluate entropy at « surface » 

 


3. Create adiabatic profile on pressure grid 

4. Evaluate radial profile

5. Repeat 3 & 4 until convergence

6. Output of Planetary radius as a function of structure


(Ps, Ts) = (P0, T0)

S = S(P0, T0, xi) i ∈ [0,Nmolecules]
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Interior structure
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Internal profiles
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Interior degenerecy

Valencia et al.
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The Pie Analogy

Apple pie ?

Blueberry pie ?

Pecan pie ?

Steak and kidney pie?
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The Pie Analogy

36



Linking models

Increasing T_irr

Convective

Linking :

• On Pressure and temperature

• On gravity

• On atmospheric composition (Molar 

mass & Density)

• On atmospheric dynamics 

(Convective)
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Linkage errors
Ideal gas law/EOS Exoris
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Linkage errors
Solution - Guillot et al. 2010 - Gray analytical model

 (Ficks law)


                  (Hydrostatic balance)


           (State equation)


Create boundary zone between 

atmosphere and interior


dT
dz

=
−3
16

T4
int

T3
κ(P, T)

dP
dz

= − ρg

ρ = fexoris(P, T) P 
(b

ar
)

T (K)
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Linking models

40



Variations with T_irr
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Variations with T_int
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Variations with Met
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Variations with core size
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Deriving planetary age
Leconte thesis

Replacing  by ( ) will give age for 
irradiated planets 

T4
int T4

int + T4
irr
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Atmospheric dynamics
Thermo-compostional convection Tremplin et al. 2019
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Verifying Thermo-compostional convection
Tremplin et al. 2019

Test hypothesis using hydrodynamics code (Ex : Basilisk) with exorem 
profiles 
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Conclusion

• Exorem/Exoris robuste models for studying atmosphere and interior

• Non négligeable amount of work to link models still (At high T_irr and 

molar weight)

• Work on exorem side - Atmosphere dynamics (Thermo-compositional 

convection) - Effect on evolution models compared to clouds

• Work on exoris to include Neptunian equations of state

• Study of internal degeneracies after retrieval

• Improving physics all round
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